W, Z + 2 jet production at NLO

John Campbell *ANL*

In collaboration with: *R. K. Ellis*

W+2 jet events

Many such events at Run I of the Tevatron. For example, with an integrated luminosity of 108 pb^{-1} CDF collected $51400 W \rightarrow e\nu$ events, of which 2000 are W + 2 jet events. This yields an 80 pb cross-section.

W+2 jet theory

- In the leading order of perturbative QCD, this process can be represented by Feynman tree-graphs. The (anti-)proton contains quarks and gluons which provide the initial state.
- At leading order a jet is represented by a single quark or gluon in the final state. Local Parton-Hadron Duality suggests this is a good approximation.

W+2 jet theory, continued

Related diagrams provide other initial states that also contribute:

Multi-jet data

This theory describes multi-jet data fairly well. For example, the leading-jet E_T spectrum for W+n jet production $(n=1,\ldots,4)$:

■ Deficiency at high E_T in the W+1 jet sample.

Failings of leading order

- Some discrepancies arise when the theory is examined in more detail.
- An important theoretical input is the value of the renormalization and factorization scales, μ_R and μ_F .
- These artificial variables are required only because we cannot solve the full theory of QCD. Instead, we compute scattering amplitudes perturbatively,

$$|\mathcal{M}_{\text{full}}^{2-\text{jet}}|^2 = \alpha_S^2 |\mathcal{M}_2|^2 + \alpha_S^3 |\mathcal{M}_3|^2 + \ldots + \alpha_S^r |\mathcal{M}_r|^2 + \ldots$$

- Truncating this series produces a dependence upon μ_R and μ_F in our predictions.
- Our leading order picture = $|\mathcal{M}_2|^2$.

Scale worries

 $W+ \geq n$ jets cross-sections from CDF Run I, compared with (enhanced) leading order theory:

$$\mu_R = \mu_F \equiv \mu$$

To reproduce the raw cross-sections, especially for the W+1, 2 jet data, the low scale $\mu^2 = \langle p_T \rangle^2$ is preferred.

Scale worries, continued

Ratio of *n*-jet cross sections, σ_n/σ_{n-1} :

$$\mu_R = \mu_F \equiv \mu$$

- Measures the "reduction in cross section caused by adding a jet" (roughly $\sim \alpha_S$).
- Useful quantity since systematics should cancel.
- High scale $\mu^2 = M_W^2 + p_T^2$ now much closer to data.

Next-to-leading order

At next-to-leading order, we include an extra "unresolved" parton in the final state

soft w p

The theory begins to look more like an experimental jet, so one expects a better agreement with data.

Scale dependence

■ W+1 jet cross-section demonstrates the reduced scale dependence that is expected at NLO, as large logarithms are partially cancelled.

Change between low ~ 20 GeV and high ~ 80 GeV scales is about 30% at LO and < 5% at NLO.

Jet p_T distribution

$$\mu = 80 \text{ GeV}$$

- Leading E_T jet becomes much softer at NLO.
- Depletion in the high- E_T tail because these jets are more likely to radiate a parton that is observed as an extra jet (exclusive sample here, not inclusive).

W+2 jets, NLO theory

Feynman diagrams for extra parton radiation, e.g.

soft gluon

collinear quark

Loop diagrams, also one extra factor of α_S :

Results for both exist in the literature, under the guise of $e^+e^- \rightarrow 4$ jet matrix elements.

NLO difficulties

- We must somehow combine two types of diagrams, each with a different number of final state partons.
- Whilst this procedure is well understood from the theory point of view, it does raise problems:
 - There is no simple correspondence between a data event and the theory description.
 - No chance of interfacing with Pythia, since the first stage of the jet evolution is already included (some work in this area at present).
 - Less experimental familiarity with NLO generators.

Loop diagrams

- Use the helicity amplitudes of Z. Bern et al.
- Loop integrals are divergent. The usual choice is to regularize in $d=4-2\epsilon$ dimensions.
- Simplistically, the result is:

$$= \left(\frac{A}{\epsilon^2} + \frac{B}{\epsilon} + C\right) \times$$

+ finite terms

- The finite terms are rational functions of the invariants, log's and di-log's. There are many terms and they are also slow to evaluate.
- Can improve speed by using the leading colour term.

Colour decomposition

- Recall the two classes of diagrams ones involving 2 quarks, 2 gluons and those with 4 quarks. We can write the matrix elements for these diagrams as an expansion in the number of colours, *N*.
- The 2 quark, 2 gluon diagrams contain the leading term and pieces suppressed by $1/N^2$ and $1/N^4$. The 4 quark diagrams are suppressed by 1/N and $1/N^3$.

dijet mass distribution

Real diagrams

- The matrix elements for the production of W+2 jets with an extra soft gluon are also divergent, for example in the limit $E_{gluon} \rightarrow 0$.
- However, in these diagrams, the matrix elements undergo a remarkable factorization:

- The eikonal factor contains all the soft and collinear singularities.
- Exploit this to cancel the singularities.

Real diagrams, continued

- Now we must compensate for the singularities that we just cancelled.
- This is done by analytically integrating the eikonal factor over the phase space of the soft gluon, to give:

$$\int (\text{eikonal factor}) \, dPS = \frac{D}{\epsilon^2} + \frac{E}{\epsilon} + F$$

- This is called the subtraction method.
- Careful choice of the kinematics in the lowest-order matrix elements is made, to optimize the singularity cancellation the dipole subtraction scheme.

Result

$$\underbrace{\begin{array}{c} \overset{\text{\tiny w}}{\underset{\text{\tiny jet}}{}} = \left(\frac{A}{\epsilon^2} + \frac{B}{\epsilon} + C\right) \times \\ \underbrace{\phantom{\begin{array}{c} \overset{\text{\tiny w}}{\underset{\text{\tiny jet}}{}} \end{array}}_{\text{\tiny loop}} = \left(\frac{A}{\epsilon^2} + \frac{B}{\epsilon} + C\right) \times \\ \underbrace{\phantom{\begin{array}{c} \overset{\text{\tiny w}}{\underset{\text{\tiny jet}}{}} \end{array}}_{\text{\tiny jet}} = \left(\frac{A}{\epsilon^2} + \frac{B}{\epsilon} + C\right) \times \\ \underbrace{\phantom{\begin{array}{c} \overset{\text{\tiny w}}{\underset{\text{\tiny jet}}{}} \end{array}}_{\text{\tiny loop}} = \left(\frac{A}{\epsilon^2} + \frac{B}{\epsilon} + C\right) \times \\ \underbrace{\phantom{\begin{array}{c} \overset{\text{\tiny w}}{\underset{\text{\tiny jet}}{}} \end{array}}_{\text{\tiny jet}} = \left(\frac{A}{\epsilon^2} + \frac{B}{\epsilon} + C\right) \times \\ \underbrace{\phantom{\begin{array}{c} \overset{\text{\tiny w}}{\underset{\text{\tiny jet}}{}} \end{array}}_{\text{\tiny loop}} = \left(\frac{A}{\epsilon^2} + \frac{B}{\epsilon} + C\right) \times \\ \underbrace{\phantom{\begin{array}{c} \overset{\text{\tiny w}}{\underset{\text{\tiny jet}}{}} \end{array}}_{\text{\tiny jet}} = \left(\frac{A}{\epsilon^2} + \frac{B}{\epsilon} + C\right) \times \\ \underbrace{\phantom{\begin{array}{c} \overset{\text{\tiny w}}{\underset{\text{\tiny jet}}{}} \end{array}}_{\text{\tiny jet}} = \left(\frac{A}{\epsilon^2} + \frac{B}{\epsilon} + C\right) \times \\ \underbrace{\phantom{\begin{array}{c} \overset{\text{\tiny w}}{\underset{\text{\tiny jet}}{}} \end{array}}_{\text{\tiny jet}} = \left(\frac{A}{\epsilon^2} + \frac{B}{\epsilon} + C\right) \times \\ \underbrace{\phantom{\begin{array}{c} \overset{\text{\tiny w}}{\underset{\text{\tiny jet}}{}} \end{array}}_{\text{\tiny jet}} = \left(\frac{A}{\epsilon^2} + \frac{B}{\epsilon} + C\right) \times \\ \underbrace{\phantom{\begin{array}{c} \overset{\text{\tiny w}}{\underset{\text{\tiny jet}}{}} \end{array}}_{\text{\tiny jet}} = \left(\frac{A}{\epsilon^2} + \frac{B}{\epsilon} + C\right) \times \\ \underbrace{\phantom{\begin{array}{c} \overset{\text{\tiny w}}{\underset{\text{\tiny jet}}{}} \end{array}}_{\text{\tiny jet}} = \left(\frac{A}{\epsilon^2} + \frac{B}{\epsilon} + C\right) \times \\ \underbrace{\phantom{\begin{array}{c} \overset{\text{\tiny w}}{\underset{\text{\tiny jet}}{}} \end{array}}_{\text{\tiny jet}} = \left(\frac{A}{\epsilon^2} + \frac{B}{\epsilon} + C\right) \times \\ \underbrace{\phantom{\begin{array}{c} \overset{\text{\tiny w}}{\underset{\text{\tiny jet}}{}} \end{array}}_{\text{\tiny jet}} = \left(\frac{A}{\epsilon^2} + \frac{B}{\epsilon} + C\right) \times \\ \underbrace{\phantom{\begin{array}{c} \overset{\text{\tiny w}}{\underset{\text{\tiny jet}}{}} \end{array}}_{\text{\tiny jet}} = \left(\frac{A}{\epsilon^2} + \frac{B}{\epsilon} + C\right) \times \\ \underbrace{\phantom{\begin{array}{c} \overset{\text{\tiny w}}{\underset{\text{\tiny jet}}{}} \end{array}}_{\text{\tiny jet}} = \left(\frac{A}{\epsilon} + \frac{B}{\epsilon} + C\right) \times \\ \underbrace{\phantom{\begin{array}{c} \overset{\text{\tiny w}}{\underset{\text{\tiny jet}}{}} \end{array}}_{\text{\tiny jet}} = \left(\frac{A}{\epsilon} + \frac{B}{\epsilon} + C\right) \times \\ \underbrace{\phantom{\begin{array}{c} \overset{\text{\tiny w}}{\underset{\text{\tiny jet}}{}} \end{array}}_{\text{\tiny jet}} = \left(\frac{A}{\epsilon} + \frac{B}{\epsilon} + C\right) \times \\ \underbrace{\phantom{\begin{array}{c} \overset{\text{\tiny w}}{\underset{\text{\tiny jet}}{}} \end{array}}_{\text{\tiny jet}} = \left(\frac{A}{\epsilon} + \frac{B}{\epsilon} + C\right) \times \\ \underbrace{\phantom{\begin{array}{c} \overset{\text{\tiny w}}{\underset{\text{\tiny jet}}{}} \end{array}}_{\text{\tiny jet}} = \left(\frac{A}{\epsilon} + \frac{B}{\epsilon} + C\right) \times \\ \underbrace{\phantom{\begin{array}{c} \overset{\text{\tiny w}}{\underset{\text{\tiny jet}}{}} \end{array}}_{\text{\tiny jet}} = \left(\frac{A}{\epsilon} + \frac{B}{\epsilon} + C\right) \times \\ \underbrace{\phantom{\begin{array}{c} \overset{\text{\tiny w}}{\underset{\text{\tiny jet}}{}} \end{array}}_{\text{\tiny jet}} = \left(\frac{A}{\epsilon} + \frac{B}{\epsilon} + C\right) \times \\ \underbrace{\phantom{\begin{array}{c} \overset{\text{\tiny w}}{\underset{\text{\tiny jet}}{}} \times B}}_{\text{\tiny jet}} = \underbrace{\phantom{\begin{array}{c} \overset{\text{\tiny w}}{\underset{\tiny jet}} = A}_{\epsilon} + C}_{\epsilon} \times \\ \underbrace{\phantom{\begin{array}{c} \overset{\text{\tiny w}}{\underset{\tiny jet}}} = A}_{\epsilon} + C}_{\epsilon} \times \underbrace{\phantom{\begin{array}{c} \overset{\text{\tiny w}}{\underset{\tiny jet}}} = A}_{\epsilon} + C}_{\epsilon} \times \underbrace{\phantom{\begin{array}{c} \overset{\text{\tiny w}}{\underset{\tiny jet}}} = A}_{\epsilon} \times \underbrace{\phantom{\begin{array}{c} \overset{\text{\tiny w}}{\underset{\tiny$$

$$dPS^{\text{gluon}} = \left(\frac{D}{\epsilon^2} + \frac{E}{\epsilon} + F\right) \times$$

- $\blacksquare A = -D, B = -E \dots$ so all poles cancel (KLN).
- We are left with integrals over the final 2-jet phase-space for:
 - The remaining finite parts of the loop diagrams;
 - The non-singular real emission diagrams where one jet contains a soft gluon or a collinear quark.

W+2 jet outline

- 1. Assemble all loop matrix elements BDKW.
- 2. Assemble all real radiation matrix elements NT.
- 3. Enumerate all possible soft, collinear singularities.
- 4. Construct appropriate counterterms to cancel these.
- 5. Check the cancellation occurs in the singular limits.
- 6. Integrate over the singular areas of phase-space.
- 7. Check that these poles cancel with those from loops.
- 8. With a given jet definition and cuts, perform the phase-space integration.
- 9. Accumulate predictions for any observables required.

Defining a jet - cone algorithm

- Cone-based algorithm, $\Delta R = \sqrt{\Delta \phi^2 + \Delta \eta^2} > R$.
- Very popular in Run I.
- Suffers from sensitivity to soft radiation at NLO.

Instability can be mitigated by extra jet seeds, e.g. midpoint algorithms.

Defining a jet - k_T algorithm

- Preferred by theory insensitive to soft radiation, immediate matching to resummed calculations.
- Limited experimental use at hadron colliders due to difficulties with energy subtraction.
- Jets are clustered according to the relative transverse momentum of one jet with respect to another.
- Similarity with cone jets is kept, since the algorithm still terminates with all jets having $\Delta R > R$.
- We shall adopt the k_T prescription that is laid out for Run II (G. Blazey et al.), where other ambiguities such as the jet recombination scheme are fixed.

Event cuts

- Concentrate on Tevatron only, cuts chosen accordingly.
- k_T clustering algorithm with pseudo-cone size, R = 0.7.
- Jet cuts, $p_T^{\text{jet}} > 15 \text{ GeV}, |y^{\text{jet}}| < 2.$
- Exclusive (only 2) jets (mostly).
- Lepton cuts, $p_T^{\text{lepton}} > 20 \text{ GeV}$, $|y^{\text{lepton}}| < 1$.
- (W only) Missing transverse momentum, $p_T^{\text{miss}} > 20 \text{ GeV}.$
- \blacksquare (Z only) Dilepton mass, $m_{e^-e^+} > 15$ GeV.

Scale dependence

- Choose factorization and renormalization scales to be equal.
- Examine scale dependence of the cross-section integrated over $20 \text{ GeV} < m_{JJ} < 200 \text{ GeV}$.

Scale dependence much reduced from $\sim 100\%$ to $\sim 10\%$ in both cases.

Leading p_T distribution

 p_T distribution of the hardest jet in W, Z+2 jet events, at the scale $\mu=80$ GeV.

- Turn-over at low p_T since 15 GeV $< p_T^2 < p_T^1$.
- The exclusive spectrum is much softer at next-to-leading order, as in the 1-jet case.
- High- E_T tail is 'filled in' for the inclusive case.

Heavy flavour content of W/Z+2 jets

- Many signals of new physics involve the production of a W or Z boson in association with a heavy particle that predominantly decays into a $b\bar{b}$ pair.
- A light Higgs is a prime example and will provide a promising search channel in Run II.

$$p\bar{p} \longrightarrow W(\rightarrow e\nu)H(\rightarrow bb)$$

 $p\bar{p} \longrightarrow Z(\rightarrow \nu\bar{\nu}, \ell\bar{\ell})H(\rightarrow b\bar{b})$

- However, we will need to understand our SM backgrounds very well to perform this search.
- The largest background is 'direct' production:

$$p\bar{p} \longrightarrow W g^{\star}(\rightarrow b\bar{b})$$
 $p\bar{p} \longrightarrow Z b\bar{b}$

Background importance

 \blacksquare NLO study of WH search using MCFM.

MCFM Summary - v. 3.0

- MCFM aims to provide a unified description of a number of processes at NLO accuracy.
- Various leptonic and/or hadronic decays of the bosons are included as further sub-processes.
- MCFM version 2.0 is now part of the CDF code repository. Working with experimenters to produce user-friendly input and output, e.g. event ntuples.

Predicting the $Wb\bar{b}$ background

- There are a number of methods for predicting the Standard Model 'direct' background.
- Amongst the theoretical choices are:
 - Fixed order vs. event generator;
 - LO vs. NLO;
 - Pythia vs. Herwig;
 - Massive b's vs. Massless b's.
- Citing a 40% uncertainty on the leading-order calculation (M. Mangano), a recent study by CDF uses a mixed approach relying heavily on generic W+ jet data, but with some theoretical input.

Hybrid recipe

- 1. Measure the number of W+2 jet events.
- 2. Subtract the number of events predicted by theory from non-direct channels.
 - $t\bar{t}$ (Pythia norm. to NLO)
 - Diboson (Pythia norm. to NLO)
 - Single top (Pythia/Herwig norm. to NLO)
- 3. This estimates the number of direct W+2 jet events.
- 4. Use VECBOS (leading order) + Herwig to estimate the fraction of W+2 jet events that contain two b's.
- 5. Obtain prediction for direct W + bb events.

Other $Wb\bar{b}$ backgrounds

Alternatives

- Is this the best we can do?
- VECBOS suffers from the same leading order uncertainty that we were trying to avoid.
- Herwig can be somewhat of a black box.
- We can calculate the Wbb cross-section at NLO in MCFM. This has a much reduced scale dependence, but suffers from no showering and massless b's.
- Another option is to calculate the same fraction,

$$\frac{\sigma(Wb\bar{b})}{\sigma(W+2\,\mathrm{jet})}$$

that is calculated by Herwig, but at NLO. Some systematics (showering, perhaps) should cancel.

b-mass effects

Compare the lowest order predictions for m_b zero and non-zero.

In the interesting region - the peak at low mass - matrix element effects dominate over phase space. The corrections there are of order 5%.

m_{JJ} distributions

■ $Wb\bar{b}$ and W+2 jet distributions appear very similar in shape at both LO and NLO. The shapes change when moving to a lower scale, with a depletion in the cross-section at high M_{jj} .

Heavy flavour fraction

The ratio of *b*-tagged to untagged jets changes very little at NLO and appears to be predicted very well by perturbation theory.

The fraction is peaked at low M_{jj} , where it is approximately 2.5 times as high as the fairly constant value of 0.8% for $M_{jj} > 60$ GeV.

Conclusions

- We have presented the first results for W, Z + 2 jet production at next-to-leading order.
- Scale dependence is greatly reduced to $\sim 10\%$ and distributions are considerably changed upon including QCD corrections.
- The fraction of a W + 2 jet sample that contains two b-jets is predicted very well in perturbation theory.
- Results for the LHC are forthcoming.
- There are many interesting studies to be done from tests of QCD to backgrounds for new physics.